DR-413 Identifying non-coding driver regions in cancer using Machine Learning
26-11-2024
No Featured Image set
Patients with some types of cancer can have their tumor DNA sequenced to identify tumor variants. The identification of specific types of variants can alert the doctor to recommend targeted therapies that are known to work best for that specific type of tumor. Currently, these sequencing studies focus on regions within the genes that ‘code’ for proteins. Little is known about the utility of all other ‘non-coding’ regions adjacent to the genes or regions that are regulating the genes. The main bottleneck of this type of research is the number of profiles of tumor variants available for study. By compiling information of tumor variants observed in HMF participants we aim to identify non-coding regions that are potentially driving cancer. We believe developing methods to identify ‘non-coding’ driver regions will serve to expand the information that can be derived from the sequencing of tumors resulting in better care for patients with cancer.
Lude Franke, UMCG, the Netherlands
Terug naar nieuws
Meer nieuws

Groeifonds investeert 325 miljoen euro in Oncode-PACT om ontwikkeling kankermedicijnen te versnellen
14-04-2022
Het Nationaal Groeifonds investeert in totaal 325 miljoen euro in het plan van Oncode-PACT om het preklinische ontwikkelproces van kankermedicijnen …

Overgang dataprocessing en -opslag naar public cloud omgeving afgerond
12-05-2020
Sinds 1 april 2020 vindt de dataprocessing en -opslag van Hartwig Medical Foundation plaats in een public cloud infrastructuur. De …

Measuring the effects of radiotherapy on cancer may open up avenues for treatment
21-05-2021
Radiotherapy works by damaging the DNA of cancer cells. It’s an effective strategy overall, but many cancers have subsets of …

Unieke dataset Hartwig heeft onze visie op uitgezaaide kanker verrijkt.
Bioinformaticus - PhD-student Erasmus MC